Combinatorial mutagenesis of the voltage-sensing domain enables the optical resolution of action potentials firing at 60 Hz by a genetically encoded fluorescent sensor of membrane potential.

نویسندگان

  • Hong Hua Piao
  • Dhanarajan Rajakumar
  • Bok Eum Kang
  • Eun Ha Kim
  • Bradley J Baker
چکیده

ArcLight is a genetically encoded fluorescent voltage sensor using the voltage-sensing domain of the voltage-sensing phosphatase from Ciona intestinalis that gives a large but slow-responding optical signal in response to changes in membrane potential (Jin et al., 2012). Fluorescent voltage sensors using the voltage-sensing domain from other species give faster yet weaker optical signals (Baker et al., 2012; Han et al., 2013). Sequence alignment of voltage-sensing phosphatases from different species revealed conserved polar and charged residues at 7 aa intervals in the S1-S3 transmembrane segments of the voltage-sensing domain, suggesting potential coil-coil interactions. The contribution of these residues to the voltage-induced optical signal was tested using a cassette mutagenesis screen by flanking each transmembrane segment with unique restriction sites to allow for the testing of individual mutations in each transmembrane segment, as well as combinations in all four transmembrane segments. Addition of a counter charge in S2 improved the kinetics of the optical response. A double mutation in the S4 domain dramatically reduced the slow component of the optical signal seen in ArcLight. Combining that double S4 mutant with the mutation in the S2 domain yielded a probe with kinetics <10 ms. Optimization of the linker sequence between S4 and the fluorescent protein resulted in a new ArcLight-derived probe, Bongwoori, capable of resolving action potentials in a hippocampal neuron firing at 60 Hz. Additional manipulation of the voltage-sensing domain could potentially lead to fluorescent sensors capable of optically resolving neuronal inhibition and subthreshold synaptic activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanistic Studies of the Genetically Encoded Fluorescent Protein Voltage Probe ArcLight

ArcLight, a genetically encoded fluorescent protein voltage probe with a large ΔF/ΔV, is a fusion between the voltage sensing domain of the Ciona instestinalis voltage sensitive phosphatase and super ecliptic pHluorin carrying a single mutation (A227D in the fluorescent protein). Without this mutation the probe produces only a very small change in fluorescence in response to voltage deflections...

متن کامل

Tuning FlaSh: redesign of the dynamics, voltage range, and color of the genetically encoded optical sensor of membrane potential.

The optical voltage sensor FlaSh, made from a fusion of a GFP "reporter domain" and a voltage-gated Shaker K(+) channel "detector domain," has been mutagenically tuned in both the GFP reporter and channel detector domains. This has produced sensors with improved folding at 37 degrees C, enabling use in mammalian preparations, and yielded variants with distinct spectra, kinetics, and voltage dep...

متن کامل

Linker length and fusion site composition improve the optical signal of genetically encoded fluorescent voltage sensors.

Several genetically encoded fluorescent sensors of voltage were created by systematically truncating the length of the linker sequence between the voltage-sensing domain and the position of the fluorescent protein, Super Ecliptic A227D. In addition to varying the length, the amino acid composition at the fusion site for the fluorescent protein was modified. Both linker length and amino acid com...

متن کامل

Genetically Targeted Optical Electrophysiology in Intact Neural Circuits

Nervous systems process information by integrating the electrical activity of neurons in complex networks. This motivates the long-standing interest in using optical methods to simultaneously monitor the membrane potential of multiple genetically targeted neurons via expression of genetically encoded fluorescent voltage indicators (GEVIs) in intact neural circuits. No currently available GEVIs ...

متن کامل

A Fluorescent, Genetically-Encoded Voltage Probe Capable of Resolving Action Potentials

There is a pressing need in neuroscience for genetically-encoded, fluorescent voltage probes that can be targeted to specific neurons and circuits to allow study of neural activity using fluorescent imaging. We created 90 constructs in which the voltage sensing portion (S1-S4) of Ciona intestinalis voltage sensitive phosphatase (CiVSP) was fused to circularly permuted eGFP. This led to Electric...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 35 1  شماره 

صفحات  -

تاریخ انتشار 2015